
27/03/08 18:20Lex and YACC primer/HOWTO

Page 1 sur 28file:///Users/dominiquemichelucci/moi/COPIE_DISK/COURS/SITE_WEB/CALCULETTE/LEX_EXEMPLES/LexYaccHOWTO.webarchive

Lex and YACC primer/HOWTO
PowerDNS BV (bert hubert
<bert@powerdns.com>)
v0.8 $Date: 2004/09/20 07:14:23 $

This document tries to help you get started using Lex and YACC

1. Introduction
Welcome, gentle reader.

If you have been programming for any length of time in a Unix
environment, you will have encountered the mystical programs Lex &
YACC, or as they are known to GNU/Linux users worldwide, Flex &
Bison, where Flex is a Lex implementation by Vern Paxson and Bison
the GNU version of YACC. We will call these programs Lex and
YACC throughout - the newer versions are upwardly compatible, so you
can use Flex and Bison when trying our examples.

These programs are massively useful, but as with your C compiler, their
manpage does not explain the language they understand, nor how to use
them. YACC is really amazing when used in combination with Lex,
however, the Bison manpage does not describe how to integrate Lex
generated code with your Bison program.

1.1 What this document is NOT
There are several great books which deal with Lex & YACC. By all
means read these books if you need to know more. They provide far
more information than we ever will. See the 'Further Reading' section at
the end. This document is aimed at bootstrapping your use of Lex &

27/03/08 18:20Lex and YACC primer/HOWTO

Page 2 sur 28file:///Users/dominiquemichelucci/moi/COPIE_DISK/COURS/SITE_WEB/CALCULETTE/LEX_EXEMPLES/LexYaccHOWTO.webarchive

YACC, to allow you to create your first programs.

The documentation that comes with Flex and BISON is also excellent,
but no tutorial. They do complement my HOWTO very well though.
They too are referenced at the end.

I am by no means a YACC/Lex expert. When I started writing this
document, I had exactly two days of experience. All I want to
accomplish is to make those two days easier for you.

In no way expect the HOWTO to show proper YACC and Lex style.
Examples have been kept very simple and there may be better ways to
write them. If you know how to, please let me know.

1.2 Downloading stuff
Please note that you can download all the examples shown, which are in
machine readable form. See the homepage for details.

1.3 License
Copyright (c) 2001 by bert hubert. This material may be distributed only
subject to the terms and conditions set forth in the Open Publication
License, vX.Y or later (the latest version is presently available at
http://www.opencontent.org/openpub/).

2. What Lex & YACC can do for you
When properly used, these programs allow you to parse complex
languages with ease. This is a great boon when you want to read a
configuration file, or want to write a compiler for any language you (or
anyone else) might have invented.

With a little help, which this document will hopefully provide, you will
find that you will never write a parser again by hand - Lex & YACC are

http://ds9a.nl/lex-yacc

27/03/08 18:20Lex and YACC primer/HOWTO

Page 3 sur 28file:///Users/dominiquemichelucci/moi/COPIE_DISK/COURS/SITE_WEB/CALCULETTE/LEX_EXEMPLES/LexYaccHOWTO.webarchive

the tools to do this.

2.1 What each program does on its own
Although these programs shine when used together, they each serve a
different purpose. The next chapter will explain what each part does.

3. Lex
The program Lex generates a so called `Lexer'. This is a function that
takes a stream of characters as its input, and whenever it sees a group of
characters that match a key, takes a certain action. A very simple
example:

%{
#include <stdio.h>
%}

%%
stop printf("Stop command received\n");
start printf("Start command received\n");
%%

The first section, in between the %{ and %} pair is included directly in
the output program. We need this, because we use printf later on, which
is defined in stdio.h.

Sections are separated using '%%', so the first line of the second section
starts with the 'stop' key. Whenever the 'stop' key is encountered in the
input, the rest of the line (a printf() call) is executed.

Besides 'stop', we've also defined 'start', which otherwise does mostly
the same.

We terminate the code section with '%%' again.

To compile Example 1, do this:

27/03/08 18:20Lex and YACC primer/HOWTO

Page 4 sur 28file:///Users/dominiquemichelucci/moi/COPIE_DISK/COURS/SITE_WEB/CALCULETTE/LEX_EXEMPLES/LexYaccHOWTO.webarchive

lex example1.l
cc lex.yy.c -o example1 -ll

NOTE: If you are using flex, instead of lex, you may
have to change '-ll' to '-lfl' in the compilation
scripts. RedHat 6.x and SuSE need this, even when you
invoke 'flex' as 'lex'!

This will generate the file 'example1'. If you run it, it waits for you to
type some input. Whenever you type something that is not matched by
any of the defined keys (ie, 'stop' and 'start') it's output again. If you
enter 'stop' it will output 'Stop command received';

Terminate with a EOF (^D).

You may wonder how the program runs, as we didn't define a main()
function. This function is defined for you in libl (liblex) which we
compiled in with the -ll command.

3.1 Regular expressions in matches
This example wasn't very useful in itself, and our next one won't be
either. It will however show how to use regular expressions in Lex,
which are massively useful later on.

Example 2:

%{
#include <stdio.h>
%}

%%
[0123456789]+ printf("NUMBER\n");
[a-zA-Z][a-zA-Z0-9]* printf("WORD\n");
%%

This Lex file describes two kinds of matches (tokens): WORDs and
NUMBERs. Regular expressions can be pretty daunting but with only a
little work it is easy to understand them. Let's examine the NUMBER
match:

27/03/08 18:20Lex and YACC primer/HOWTO

Page 5 sur 28file:///Users/dominiquemichelucci/moi/COPIE_DISK/COURS/SITE_WEB/CALCULETTE/LEX_EXEMPLES/LexYaccHOWTO.webarchive

[0123456789]+

This says: a sequence of one or more characters from the group
0123456789. We could also have written it shorter as:

[0-9]+

Now, the WORD match is somewhat more involved:

[a-zA-Z][a-zA-Z0-9]*

The first part matches 1 and only 1 character that is between 'a' and 'z',
or between 'A' and 'Z'. In other words, a letter. This initial letter then
needs to be followed by zero or more characters which are either a letter
or a digit. Why use an asterisk here? The '+' signifies 1 or more
matches, but a WORD might very well consist of only one character,
which we've already matched. So the second part may have zero
matches, so we write a '*'.

This way, we've mimicked the behaviour of many programming
languages which demand that a variable name *must* start with a letter,
but can contain digits afterwards. In other words, 'temperature1' is a
valid name, but '1temperature' is not.

Try compiling Example 2, lust like Example 1, and feed it some text.
Here is a sample session:

$./example2
foo
WORD

bar
WORD

123
NUMBER

bar123
WORD

123bar

27/03/08 18:20Lex and YACC primer/HOWTO

Page 6 sur 28file:///Users/dominiquemichelucci/moi/COPIE_DISK/COURS/SITE_WEB/CALCULETTE/LEX_EXEMPLES/LexYaccHOWTO.webarchive

NUMBER
WORD

You may also be wondering where all this whitespace is coming from in
the output. The reason is simple: it was in the input, and we don't match
on it anywhere, so it gets output again.

The Flex manpage documents its regular expressions in detail. Many
people feel that the perl regular expression manpage (perlre) is also very
useful, although Flex does not implement everything perl does.

Make sure that you do not create zero length matches like '[0-9]*' - your
lexer might get confused and start matching empty strings repeatedly.

3.2 A more complicated example for a C like
syntax
Let's say we want to parse a file that looks like this:

logging {
 category lame-servers { null; };
 category cname { null; };
};

zone "." {
 type hint;
 file "/etc/bind/db.root";
};

We clearly see a number of categories (tokens) in this file:

WORDs, like 'zone' and 'type'
FILENAMEs, like '/etc/bind/db.root'
QUOTEs, like those surrounding the filename
OBRACEs, {
EBRACEs, }
SEMICOLONs, ;

The corresponding Lex file is Example 3:

27/03/08 18:20Lex and YACC primer/HOWTO

Page 7 sur 28file:///Users/dominiquemichelucci/moi/COPIE_DISK/COURS/SITE_WEB/CALCULETTE/LEX_EXEMPLES/LexYaccHOWTO.webarchive

%{
#include <stdio.h>
%}

%%
[a-zA-Z][a-zA-Z0-9]* printf("WORD ");
[a-zA-Z0-9\/.-]+ printf("FILENAME ");
\" printf("QUOTE ");
\{ printf("OBRACE ");
\} printf("EBRACE ");
; printf("SEMICOLON ");
\n printf("\n");
[\t]+ /* ignore whitespace */;
%%

When we feed our file to the program this Lex file generates (using
example3.compile), we get:

WORD OBRACE
WORD FILENAME OBRACE WORD SEMICOLON EBRACE SEMICOLON
WORD WORD OBRACE WORD SEMICOLON EBRACE SEMICOLON
EBRACE SEMICOLON

WORD QUOTE FILENAME QUOTE OBRACE
WORD WORD SEMICOLON
WORD QUOTE FILENAME QUOTE SEMICOLON
EBRACE SEMICOLON

When compared with the configuration file mentioned above, it is clear
that we have neatly 'Tokenized' it. Each part of the configuration file has
been matched, and converted into a token.

And this is exactly what we need to put YACC to good use.

3.3 What we've seen
We've seen that Lex is able to read arbitrary input, and determine what
each part of the input is. This is called 'Tokenizing'.

4. YACC

27/03/08 18:20Lex and YACC primer/HOWTO

Page 8 sur 28file:///Users/dominiquemichelucci/moi/COPIE_DISK/COURS/SITE_WEB/CALCULETTE/LEX_EXEMPLES/LexYaccHOWTO.webarchive

YACC can parse input streams consisting of tokens with certain values.
This clearly describes the relation YACC has with Lex, YACC has no
idea what 'input streams' are, it needs preprocessed tokens. While you
can write your own Tokenizer, we will leave that entirely up to Lex.

A note on grammars and parsers. When YACC saw the light of day, the
tool was used to parse input files for compilers: programs. Programs
written in a programming language for computers are typically *not*
ambiguous - they have just one meaning. As such, YACC does not cope
with ambiguity and will complain about shift/reduce or reduce/reduce
conflicts. More about ambiguity and YACC "problems" can be found in
'Conflicts' chapter.

4.1 A simple thermostat controller
Let's say we have a thermostat that we want to control using a simple
language. A session with the thermostat may look like this:

heat on
 Heater on!
heat off
 Heater off!
target temperature 22
 New temperature set!

The tokens we need to recognize are: heat, on/off (STATE), target,
temperature, NUMBER.

The Lex tokenizer (Example 4) is:

%{
#include <stdio.h>
#include "y.tab.h"
%}
%%
[0-9]+ return NUMBER;
heat return TOKHEAT;
on|off return STATE;
target return TOKTARGET;
temperature return TOKTEMPERATURE;
\n /* ignore end of line */;

27/03/08 18:20Lex and YACC primer/HOWTO

Page 9 sur 28file:///Users/dominiquemichelucci/moi/COPIE_DISK/COURS/SITE_WEB/CALCULETTE/LEX_EXEMPLES/LexYaccHOWTO.webarchive

[\t]+ /* ignore whitespace */;
%%

We note two important changes. First, we include the file 'y.tab.h', and
secondly, we no longer print stuff, we return names of tokens. This
change is because we are now feeding it all to YACC, which isn't
interested in what we output to the screen. Y.tab.h has definitions for
these tokens.

But where does y.tab.h come from? It is generated by YACC from the
Grammar File we are about to create. As our language is very basic, so
is the grammar:

commands: /* empty */
 | commands command
 ;

command:
 heat_switch
 |
 target_set
 ;

heat_switch:
 TOKHEAT STATE
 {
 printf("\tHeat turned on or off\n");
 }
 ;

target_set:
 TOKTARGET TOKTEMPERATURE NUMBER
 {
 printf("\tTemperature set\n");
 }
 ;

The first part is what I call the 'root'. It tells us that we have 'commands',
and that these commands consist of individual 'command' parts. As you
can see this rule is very recursive, because it again contains the word
'commands'. What this means is that the program is now capable of
reducing a series of commands one by one. Read the chapter 'How do
Lex and YACC work internally' for important details on recursion.

27/03/08 18:20Lex and YACC primer/HOWTO

Page 10 sur 28file:///Users/dominiquemichelucci/moi/COPIE_DISK/COURS/SITE_WEB/CALCULETTE/LEX_EXEMPLES/LexYaccHOWTO.webarchive

The second rule defines what a command is. We support only two kinds
of commands, the 'heat_switch' and the 'target_set'. This is what the |-
symbol signifies - 'a command consists of either a heat_switch or a
target_set'.

A heat_switch consists of the HEAT token, which is simply the word
'heat', followed by a state (which we defined in the Lex file as 'on' or
'off').

Somewhat more complicated is the target_set, which consists of the
TARGET token (the word 'target'), the TEMPERATURE token (the
word 'temperature') and a number.

A complete YACC file

The previous section only showed the grammar part of the YACC file,
but there is more. This is the header that we omitted:

%{
#include <stdio.h>
#include <string.h>

void yyerror(const char *str)
{
 fprintf(stderr,"error: %s\n",str);
}

int yywrap()
{
 return 1;
}

main()
{
 yyparse();
}

%}

%token NUMBER TOKHEAT STATE TOKTARGET TOKTEMPERATURE

The yyerror() function is called by YACC if it finds an error. We simply

27/03/08 18:20Lex and YACC primer/HOWTO

Page 11 sur 28file:///Users/dominiquemichelucci/moi/COPIE_DISK/COURS/SITE_WEB/CALCULETTE/LEX_EXEMPLES/LexYaccHOWTO.webarchive

output the message passed, but there are smarter things to do. See the
'Further reading' section at the end.

The function yywrap() can be used to continue reading from another file.
It is called at EOF and you can than open another file, and return 0. Or
you can return 1, indicating that this is truly the end. For more about
this, see the 'How do Lex and YACC work internally' chapter.

Then there is the main() function, that does nothing but set everything in
motion.

The last line simply defines the tokens we will be using. These are
output using y.tab.h if YACC is invoked with the '-d' option.

Compiling & running the thermostat controller

lex example4.l
yacc -d example4.y
cc lex.yy.c y.tab.c -o example4

A few things have changed. We now also invoke YACC to compile our
grammar, which creates y.tab.c and y.tab.h. We then call Lex as usual.
When compiling, we remove the -ll flag: we now have our own main()
function and don't need the one provided by libl.

NOTE: if you get an error about your compiler not being
able to find 'yylval', add this to example4.l, just
beneath #include <y.tab.h>:

extern YYSTYPE yylval;

This is explained in the 'How Lex and YACC work
internally' section.

A sample session:

$./example4
heat on
 Heat turned on or off
heat off
 Heat turned on or off

27/03/08 18:20Lex and YACC primer/HOWTO

Page 12 sur 28file:///Users/dominiquemichelucci/moi/COPIE_DISK/COURS/SITE_WEB/CALCULETTE/LEX_EXEMPLES/LexYaccHOWTO.webarchive

target temperature 10
 Temperature set
target humidity 20
error: parse error
$

This is not quite what we set out to achieve, but in the interest of
keeping the learning curve manageable, not all cool stuff can be
presented at once.

4.2 Expanding the thermostat to handle
parameters
As we've seen, we now parse the thermostat commands correctly, and
even flag mistakes properly. But as you might have guessed by the
weasely wording, the program has no idea of what it should do, it does
not get passed any of the values you enter.

Let's start by adding the ability to read the new target temperature. In
order to do so, we need to learn the NUMBER match in the Lexer to
convert itself into an integer value, which can then be read in YACC.

Whenever Lex matches a target, it puts the text of the match in the
character string 'yytext'. YACC in turn expects to find a value in the
variable 'yylval'. In Example 5, we see the obvious solution:

%{
#include <stdio.h>
#include "y.tab.h"
%}
%%
[0-9]+ yylval=atoi(yytext); return NUMBER;
heat return TOKHEAT;
on|off yylval=!strcmp(yytext,"on"); return STATE;
target return TOKTARGET;
temperature return TOKTEMPERATURE;
\n /* ignore end of line */;
[\t]+ /* ignore whitespace */;
%%

27/03/08 18:20Lex and YACC primer/HOWTO

Page 13 sur 28file:///Users/dominiquemichelucci/moi/COPIE_DISK/COURS/SITE_WEB/CALCULETTE/LEX_EXEMPLES/LexYaccHOWTO.webarchive

As you can see, we run atoi() on yytext, and put the result in yylval,
where YACC can see it. We do much the same for the STATE match,
where we compare it to 'on', and set yylval to 1 if it is equal. Please note
that having a separate 'on' and 'off' match in Lex would produce faster
code, but I wanted to show a more complicated rule and action for a
change.

Now we need to learn YACC how to deal with this. What is called
'yylval' in Lex has a different name in YACC. Let's examine the rule
setting the new temperature target:

target_set:
 TOKTARGET TOKTEMPERATURE NUMBER
 {
 printf("\tTemperature set to %d\n",$3);
 }
 ;

To access the value of the third part of the rule (ie, NUMBER), we need
to use $3. Whenever yylex() returns, the contents of yylval are attached
to the terminal, the value of which can be accessed with the $-construct.

To expound on this further, let's observe the new 'heat_switch' rule:

heat_switch:
 TOKHEAT STATE
 {
 if($2)
 printf("\tHeat turned on\n");
 else
 printf("\tHeat turned off\n");
 }
 ;

If you now run example5, it properly outputs what you entered.

4.3 Parsing a configuration file
Let's repeat part of the configuration file we mentioned earlier:

zone "." {

27/03/08 18:20Lex and YACC primer/HOWTO

Page 14 sur 28file:///Users/dominiquemichelucci/moi/COPIE_DISK/COURS/SITE_WEB/CALCULETTE/LEX_EXEMPLES/LexYaccHOWTO.webarchive

 type hint;
 file "/etc/bind/db.root";
};

Remember that we already wrote a Lexer for this file. Now all we need
to do is write the YACC grammar, and modify the Lexer so it returns
values in a format YACC can understand.

In the lexer from Example 6 we see:

%{
#include <stdio.h>
#include "y.tab.h"
%}

%%

zone return ZONETOK;
file return FILETOK;
[a-zA-Z][a-zA-Z0-9]* yylval=strdup(yytext); return WORD;
[a-zA-Z0-9\/.-]+ yylval=strdup(yytext); return FILENAME;
\" return QUOTE;
\{ return OBRACE;
\} return EBRACE;
; return SEMICOLON;
\n /* ignore EOL */;
[\t]+ /* ignore whitespace */;
%%

If you look carefully, you can see that yylval has changed! We no longer
expect it to be an integer, but in fact assume that it is a char *. In the
interest of keeping things simple, we invoke strdup and waste a lot of
memory. Please note that this may not be a problem in many areas
where you only need to parse a file once, and then exit.

We want to store character strings because we are now mostly dealing
with names: file names and zone names. In a later chapter we will
explain how to deal with multiple types of data.

In order to tell YACC about the new type of yylval, we add this line to
the header of our YACC grammar:

#define YYSTYPE char *

27/03/08 18:20Lex and YACC primer/HOWTO

Page 15 sur 28file:///Users/dominiquemichelucci/moi/COPIE_DISK/COURS/SITE_WEB/CALCULETTE/LEX_EXEMPLES/LexYaccHOWTO.webarchive

The grammar itself is again more complicated. We chop it in parts to
make it easier to digest.

commands:
 |
 commands command SEMICOLON
 ;

command:
 zone_set
 ;

zone_set:
 ZONETOK quotedname zonecontent
 {
 printf("Complete zone for '%s' found\n",$2);
 }
 ;

This is the intro, including the aforementioned recursive 'root'. Please
note that we specify that commands are terminated (and separated) by
;'s. We define one kind of command, the 'zone_set'. It consists of the
ZONE token (the word 'zone'), followed by a quoted name and the
'zonecontent'. This zonecontent starts out simple enough:

zonecontent:
 OBRACE zonestatements EBRACE

It needs to start with an OBRACE, a {. Then follow the zonestatements,
followed by an EBRACE, }.

quotedname:
 QUOTE FILENAME QUOTE
 {
 $$=$2;
 }

This section defines what a 'quotedname' is: a FILENAME between
QUOTEs. Then it says something special: the value of a quotedname
token is the value of the FILENAME. This means that the quotedname
has as its value the filename without quotes.

27/03/08 18:20Lex and YACC primer/HOWTO

Page 16 sur 28file:///Users/dominiquemichelucci/moi/COPIE_DISK/COURS/SITE_WEB/CALCULETTE/LEX_EXEMPLES/LexYaccHOWTO.webarchive

This is what the magic '$$=$2;' command does. It says: my value is the
value of my second part. When the quotedname is now referenced in
other rules, and you access its value with the $-construct, you see the
value that we set here with $$=$2.

NOTE: this grammar chokes on filenames without either a
'.' or a '/' in them.

zonestatements:
 |
 zonestatements zonestatement SEMICOLON
 ;

zonestatement:
 statements
 |
 FILETOK quotedname
 {
 printf("A zonefile name '%s' was encountered\n", $2);
 }
 ;

This is a generic statement that catches all kinds of statements within the
'zone' block. We again see the recursiveness.

block:
 OBRACE zonestatements EBRACE SEMICOLON
 ;

statements:
 | statements statement
 ;

statement: WORD | block | quotedname

This defines a block, and 'statements' which may be found within.

When executed, the output is like this:

$./example6
zone "." {
 type hint;
 file "/etc/bind/db.root";
 type hint;

27/03/08 18:20Lex and YACC primer/HOWTO

Page 17 sur 28file:///Users/dominiquemichelucci/moi/COPIE_DISK/COURS/SITE_WEB/CALCULETTE/LEX_EXEMPLES/LexYaccHOWTO.webarchive

};
A zonefile name '/etc/bind/db.root' was encountered
Complete zone for '.' found

5. Making a Parser in C++
Although Lex and YACC predate C++, it is possible to generate a C++
parser. While Flex includes an option to generate a C++ lexer, we won't
be using that, as YACC doesn't know how to deal with it directly.

My preferred way to make a C++ parser is to have Lex generate a plain
C file, and to let YACC generate C++ code. When you then link your
application, you may run into some problems because the C++ code by
default won't be able to find C functions, unless you've told it that those
functions are extern "C".

To do so, make a C header in YACC like this:

extern "C"
{
 int yyparse(void);
 int yylex(void);
 int yywrap()
 {
 return 1;
 }

}

If you want to declare or change yydebug, you must now do it like this:

extern int yydebug;

main()
{
 yydebug=1;
 yyparse();
}

This is because C++'s One Definition Rule, which disallows multiple
definitions of yydebug.

27/03/08 18:20Lex and YACC primer/HOWTO

Page 18 sur 28file:///Users/dominiquemichelucci/moi/COPIE_DISK/COURS/SITE_WEB/CALCULETTE/LEX_EXEMPLES/LexYaccHOWTO.webarchive

You may also find that you need to repeat the #define of YYSTYPE in
your Lex file, because of C++'s stricter type checking.

To compile, do something like this:

lex bindconfig2.l
yacc --verbose --debug -d bindconfig2.y -o bindconfig2.cc
cc -c lex.yy.c -o lex.yy.o
c++ lex.yy.o bindconfig2.cc -o bindconfig2

Because of the -o statement, y.tab.h is now called bindconfig2.cc.h, so
take that into account.

To summarize: don't bother to compile your Lexer in C++, keep it in C.
Make your Parser in C++ and explain your compiler that some functions
are C functions with extern "C" statements.

6. How do Lex and YACC work internally
In the YACC file, you write your own main() function, which calls
yyparse() at one point. The function yyparse() is created for you by
YACC, and ends up in y.tab.c.

yyparse() reads a stream of token/value pairs from yylex(), which needs
to be supplied. You can code this function yourself, or have Lex do it
for you. In our examples, we've chosen to leave this task to Lex.

The yylex() as written by Lex reads characters from a FILE * file
pointer called yyin. If you do not set yyin, it defaults to standard input. It
outputs to yyout, which if unset defaults to stdout. You can also modify
yyin in the yywrap() function which is called at the end of a file. It
allows you to open another file, and continue parsing.

If this is the case, have it return 0. If you want to end parsing at this file,
let it return 1.

Each call to yylex() returns an integer value which represents a token
type. This tells YACC what kind of token it has read. The token may

27/03/08 18:20Lex and YACC primer/HOWTO

Page 19 sur 28file:///Users/dominiquemichelucci/moi/COPIE_DISK/COURS/SITE_WEB/CALCULETTE/LEX_EXEMPLES/LexYaccHOWTO.webarchive

optionally have a value, which should be placed in the variable yylval.

By default yylval is of type int, but you can override that from the
YACC file by re#defining YYSTYPE.

The Lexer needs to be able to access yylval. In order to do so, it must be
declared in the scope of the lexer as an extern variable. The original
YACC neglects to do this for you, so you should add the following to
your lexter, just beneath #include <y.tab.h>:

extern YYSTYPE yylval;

Bison, which most people are using these days, does this for you
automatically.

6.1 Token values
As mentioned before, yylex() needs to return what kind of token it
encountered, and put its value in yylval. When these tokens are defined
with the %token command, they are assigned numerical id's, starting
from 256.

Because of that fact, it is possible to have all ascii characters as a token.
Let's say you are writing a calculator, up till now we would have written
the lexer like this:

[0-9]+ yylval=atoi(yytext); return NUMBER;
[\n]+ /* eat whitespace */;
- return MINUS;
* return MULT;
\+ return PLUS;
...

Our YACC grammer would then contain:

 exp: NUMBER
 |
 exp PLUS exp
 |
 exp MINUS exp

27/03/08 18:20Lex and YACC primer/HOWTO

Page 20 sur 28file:///Users/dominiquemichelucci/moi/COPIE_DISK/COURS/SITE_WEB/CALCULETTE/LEX_EXEMPLES/LexYaccHOWTO.webarchive

 |
 exp MULT exp

This is needlessly complicated. By using characters as shorthands for
numerical token id's, we can rewrite our lexer like this:

[0-9]+ yylval=atoi(yytext); return NUMBER;
[\n]+ /* eat whitespace */;
. return (int) yytext[0];

This last dot matches all single otherwise unmatched characters.

Our YACC grammer would then be:

 exp: NUMBER
 |
 exp '+' exp
 |
 exp '-' exp
 |
 exp '*' exp

This is lots shorter and also more obvious. You do not need to declare
these ascii tokens with %token in the header, they work out of the box.

One other very good thing about this construct is that Lex will now
match everything we throw at it - avoiding the default behaviour of
echoing unmatched input to standard output. If a user of this calculator
uses a ^, for example, it will now generate a parsing error, instead of
being echoed to standard output.

6.2 Recursion: 'right is wrong'
Recursion is a vital aspect of YACC. Without it, you can't specify that a
file consists of a sequence of independent commands or statements. Out
of its own accord, YACC is only interested in the first rule, or the one
you designate as the starting rule, with the '%start' symbol.

Recursion in YACC comes in two flavours: right and left. Left
recursion, which is the one you should use most of the time, looks like

27/03/08 18:20Lex and YACC primer/HOWTO

Page 21 sur 28file:///Users/dominiquemichelucci/moi/COPIE_DISK/COURS/SITE_WEB/CALCULETTE/LEX_EXEMPLES/LexYaccHOWTO.webarchive

this:

commands: /* empty */
 |
 commands command

This says: a command is either empty, or it consists of more commands,
followed by a command. They way YACC works means that it can now
easily chop off individual command groups (from the front) and reduce
them.

Compare this to right recursion, which confusingly enough looks better
to many eyes:

commands: /* empty */
 |
 command commands

But this is expensive. If used as the %start rule, it requires YACC to
keep all commands in your file on the stack, which may take a lot of
memory. So by all means, use left recursion when parsing long
statements, like entire files. Sometimes it is hard to avoid right recursion
but if your statements are not too long, you do not need to go out of your
way to use left recursion.

If you have something terminating (and therefore separating) your
commands, right recursion looks very natural, but is still expensive:

commands: /* empty */
 |
 command SEMICOLON commands

The right way to code this is using left recursion (I didn't invent this
either):

commands: /* empty */
 |
 commands command SEMICOLON

Earlier versions of this HOWTO mistakenly used right recursion.
Markus Triska kindly informed us of this.

27/03/08 18:20Lex and YACC primer/HOWTO

Page 22 sur 28file:///Users/dominiquemichelucci/moi/COPIE_DISK/COURS/SITE_WEB/CALCULETTE/LEX_EXEMPLES/LexYaccHOWTO.webarchive

6.3 Advanced yylval: %union
Currently, we need to define *the* type of yylval. This however is not
always appropriate. There will be times when we need to be able to
handle multiple data types. Returning to our hypothetical thermostat,
perhaps we want to be able to choose a heater to control, like this:

heater mainbuiling
 Selected 'mainbuilding' heater
target temperature 23
 'mainbuilding' heater target temperature now 23

What this calls for is for yylval to be a union, which can hold both
strings and integers - but not simultaneously.

Remember that we told YACC previously what type yylval was
supposed to by by defining YYSTYPE. We could conceivably define
YYSTYPE to be a union this way, by YACC has an easier method for
doing this: the %union statement.

Based on Example 4, we now write the Example 7 YACC grammar.
First the intro:

%token TOKHEATER TOKHEAT TOKTARGET TOKTEMPERATURE

%union
{
 int number;
 char *string;
}

%token <number> STATE
%token <number> NUMBER
%token <string> WORD

We define our union, which contains only a number and a string. Then
using an extended %token syntax, we explain to YACC which part of
the union each token should access.

In this case, we let the STATE token use an integer, as before. Same

27/03/08 18:20Lex and YACC primer/HOWTO

Page 23 sur 28file:///Users/dominiquemichelucci/moi/COPIE_DISK/COURS/SITE_WEB/CALCULETTE/LEX_EXEMPLES/LexYaccHOWTO.webarchive

goes for the NUMBER token, which we use for reading temperatures.

New however is the WORD token, which is declared to need a string.

The Lexer file changes a bit too:

%{
#include <stdio.h>
#include <string.h>
#include "y.tab.h"
%}
%%
[0-9]+ yylval.number=atoi(yytext); return NUMBER;
heater return TOKHEATER;
heat return TOKHEAT;
on|off yylval.number=!strcmp(yytext,"on"); return STATE;
target return TOKTARGET;
temperature return TOKTEMPERATURE;
[a-z0-9]+ yylval.string=strdup(yytext);return WORD;
\n /* ignore end of line */;
[\t]+ /* ignore whitespace */;
%%

As you can see, we don't access the yylval directly anymore, we add a
suffix indicating which part we want to access. We don't need to do that
in the YACC grammar however, as YACC performs the magic for us:

heater_select:
 TOKHEATER WORD
 {
 printf("\tSelected heater '%s'\n",$2);
 heater=$2;
 }
 ;

Because of the %token declaration above, YACC automatically picks
the 'string' member from our union. Note also that we store a copy of $2,
which is later used to tell the user which heater he is sending commands
to:

target_set:
 TOKTARGET TOKTEMPERATURE NUMBER
 {
 printf("\tHeater '%s' temperature set to %d\n",heater,$3);

27/03/08 18:20Lex and YACC primer/HOWTO

Page 24 sur 28file:///Users/dominiquemichelucci/moi/COPIE_DISK/COURS/SITE_WEB/CALCULETTE/LEX_EXEMPLES/LexYaccHOWTO.webarchive

 }
 ;

For more details, read example7.y.

7. Debugging
Especially when learning, it is important to have debugging facilities.
Luckily, YACC can give a lot of feedback. This feedback comes at the
cost of some overhead, so you need to supply some switches to enable
it.

When compiling your grammar, add --debug and --verbose to the
YACC commandline. In your grammar C heading, add the following:

int yydebug=1;

This will generate the file 'y.output' which explains the state machine
that was created.

When you now run the generated binary, it will output a *lot* of what is
happening. This includes what state the state machine currently has, and
what tokens are being read.

Peter Jinks wrote a page on debugging which contains some common
errors and how to solve them.

7.1 The state machine
Internally, your YACC parser runs a so called 'state machine'. As the
name implies, this is a machine that can be in several states. Then there
are rules which govern transitions from one state to another. Everything
starts with the so called 'root' rule I mentioned earlier.

To quote from the output from the Example 7 y.output:

state 0

http://www.cs.man.ac.uk/~pjj/cs2121/debug.html

27/03/08 18:20Lex and YACC primer/HOWTO

Page 25 sur 28file:///Users/dominiquemichelucci/moi/COPIE_DISK/COURS/SITE_WEB/CALCULETTE/LEX_EXEMPLES/LexYaccHOWTO.webarchive

 ZONETOK , and go to state 1

 $default reduce using rule 1 (commands)

 commands go to state 29
 command go to state 2
 zone_set go to state 3

By default, this state reduces using the 'commands' rule. This is the
aforementioned recursive rule that defines 'commands' to be built up
from individual command statements, followed by a semicolon,
followed by possibly more commands.

This state reduces until it hits something it understands, in this case, a
ZONETOK, ie, the word 'zone'. It then goes to state 1, which deals
further with a zone command:

state 1

 zone_set -> ZONETOK . quotedname zonecontent (rule 4)

 QUOTE , and go to state 4

 quotedname go to state 5

The first line has a '.' in it to indicate where we are: we've just seen a
ZONETOK and are now looking for a 'quotedname'. Apparently, a
quotedname starts with a QUOTE, which sends us to state 4.

To follow this further, compile Example 7 with the flags mentioned in
the Debugging section.

7.2 Conflicts: 'shift/reduce', 'reduce/reduce'
Whenever YACC warns you about conflicts, you may be in for trouble.
Solving these conflicts appears to be somewhat of an art form that may
teach you a lot about your language. More than you possibly would have
wanted to know.

27/03/08 18:20Lex and YACC primer/HOWTO

Page 26 sur 28file:///Users/dominiquemichelucci/moi/COPIE_DISK/COURS/SITE_WEB/CALCULETTE/LEX_EXEMPLES/LexYaccHOWTO.webarchive

The problems revolve around how to interpret a sequence of tokens.
Let's suppose we define a language that needs to accept both these
commands:

 delete heater all
 delete heater number1

To do this, we define this grammar:

 delete_heaters:
 TOKDELETE TOKHEATER mode
 {
 deleteheaters($3);
 }

 mode: WORD

 delete_a_heater:
 TOKDELETE TOKHEATER WORD
 {
 delete($3);
 }

You may already be smelling trouble. The state machine starts by
reading the word 'delete', and then needs to decide where to go based on
the next token. This next token can either be a mode, specifying how to
delete the heaters, or the name of a heater to delete.

The problem however is that for both commands, the next token is
going to be a WORD. YACC has therefore no idea what to do. This
leads to a 'reduce/reduce' warning, and a further warning that the
'delete_a_heater' node is never going to be reached.

In this case the conflict is resolved easily (ie, by renaming the first
command to 'delete heaters all', or by making 'all' a separate token), but
sometimes it is harder. The y.output file generated when you pass yacc
the --verbose flag can be of tremendous help.

8. Further reading

27/03/08 18:20Lex and YACC primer/HOWTO

Page 27 sur 28file:///Users/dominiquemichelucci/moi/COPIE_DISK/COURS/SITE_WEB/CALCULETTE/LEX_EXEMPLES/LexYaccHOWTO.webarchive

GNU YACC (Bison) comes with a very nice info-file (.info) which
documents the YACC syntax very well. It mentions Lex only once, but
otherwise it's very good. You can read .info files with Emacs or with the
very nice tool 'pinfo'. It is also available on the GNU site: BISON
Manual.

Flex comes with a good manpage which is very useful if you already
have a rough understanding of what Flex does. The Flex Manual is also
available online.

After this introduction to Lex and YACC, you may find that you need
more information. I haven't read any of these books yet, but they sound
good:

Bison-The Yacc-Compatible Parser Generator

By Charles Donnelly and Richard Stallman. An Amazon user found
it useful.

Lex & Yacc

By John R. Levine, Tony Mason and Doug Brown. Considered to
be the standard work on this subject, although a bit dated. Reviews
over at Amazon.

Compilers : Principles, Techniques, and Tools

By Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman. The 'Dragon
Book'. From 1985 and they just keep printing it. Considered the
standard work on constructing compilers. Amazon

Thomas Niemann wrote a document discussing how to write compilers
and calculators with Lex & YACC. You can find it here.

The moderated usenet newsgroup comp.compilers can also be very
useful but please keep in mind that the people there are not a dedicated
parser helpdesk! Before posting, read their interesting page and
especially the FAQ.

http://www.gnu.org/manual/bison/
http://www.gnu.org/manual/flex/
http://www.amazon.com/exec/obidos/ASIN/0595100325/qid=989165194/sr=1-2/ref=sc_b_3/002-7737249-1404015
http://www.amazon.com/exec/obidos/ASIN/1565920007/ref=sim_books/002-7737249-1404015
http://www.amazon.com/exec/obidos/ASIN/0201100886/ref=sim_books/002-7737249-1404015
http://epaperpress.com/lexandyacc/index.html
http://compilers.iecc.com/
http://compilers.iecc.com/faq.txt

27/03/08 18:20Lex and YACC primer/HOWTO

Page 28 sur 28file:///Users/dominiquemichelucci/moi/COPIE_DISK/COURS/SITE_WEB/CALCULETTE/LEX_EXEMPLES/LexYaccHOWTO.webarchive

Lex - A Lexical Analyzer Generator by M. E. Lesk and E. Schmidt is
one of the original reference papers. It can be found here.

Yacc: Yet Another Compiler-Compiler by Stephen C. Johnson is one of
the original reference papers for YACC. It can be found here. It contains
useful hints on style.

9. Acknowledgements & Thanks
Pete Jinks <pjj%cs.man.ac.uk>
Chris Lattner <sabre%nondot.org>
John W. Millaway <johnmillaway%yahoo.com>
Martin Neitzel <neitzel%gaertner.de>
Sumit Pandaya <sumit%elitecore.com>
Esmond Pitt <esmond.pitt%bigpond.com>
Eric S. Raymond
Bob Schmertz <schmertz%wam.umd.edu>
Adam Sulmicki <adam%cfar.umd.edu>
Markus Triska <triska%gmx.at>
Erik Verbruggen <erik%road-warrior.cs.kun.nl>
Gary V. Vaughan <gary%gnu.org> (read his awesome Autobook)
Ivo van der Wijk (Amaze Internet)

http://www.cs.utexas.edu/users/novak/lexpaper.htm
http://www.cs.utexas.edu/users/novak/yaccpaper.htm
http://sources.redhat.com/autobook
http://www.amaze.nl/
http://vanderwijk.info/

